
A Novel Approach for SQL Injection Prevention
Using Hashing & Encryption (SQL-ENCP)

Mayank Namdev , Fehreen Hasan, Gaurav Shrivastav

Department of Computer Science and Engineering
RKDF Institute of Science & Technology (RGPV)

Bhopal (M.P.), INDIA

Abstract: SQL Injection Attack (SQLIA) is a technique that
helps the attackers to direct enters into the database in an
unauthorized way and reach the highest or most decisive point
in extracting or updating sensitive information from any
organizations database. In this paper, we studied the scenario
of the different types of attacks with descriptions and
examples of how attacks of that type could be performed and
their detection & prevention schemes. It also contains
strengths and weaknesses of various SQL injection attacks.
It is known to all that SQL injection attacks easily prevented
by applying more secure schemes in login phase and after
login phase. Therefore, we implement our proposed scheme
called SQLENCP, the SQL injection prevention by encryption
& hashing techniques, to handle the SQLIA and prevent
them. Although, the proposed implemented system is unable
to handle all the SQL injection attacks, but it can prevent
tautology attacks, union based query attacks & illegal
structured query attacks.

Keywords: SQL injections, SQL injection attacks, SQL
attacks, database attacks, hashing, encryption, decryption.

I. INTRODUCTION
SQL injection is one of the most devastating vulnerabilities
to affect a business, as it can lead to exposure of all of the
sensitive information stored in an application’s database,
including handy information such as usernames, passwords,
names, addresses, phone numbers, and credit card details.
SQL injection has probably existed since SQL databases
were first connected to Web applications. Most of us either
use Web applications on a daily basis, as part of our
vocation or in order to access our e-mail, book a holiday,
purchase a product from an online store, view a news item
of interest, and so forth. One thing that Web applications
have in common, regardless of the language in which they
were written, is that they are interactive and, more often
than not, are database-driven. Database-driven Web
applications are very common in today’s Web-enabled
society. They normally consist of a back-end database with
Web pages that contain server-side script written in a
programming language that is capable of extracting specific
information from a database depending on various dynamic
interactions with the user. One of the most common
applications for a database-driven Web application is an e-
commerce application. While, on the other side, the
organization increases the use of office automation
software & services, that helps them to maintain the
confidential information with less efforts. Therefore, in this
scenario it is not wrong to say that Information will be the
single most important business asset today and achieving a
high level of information security can be viewed as

imperative in order to maintain a competitive edge. SQL
Injection Attacks (SQLIA’s) are one of the most severe
threats to web application security. They are frequently
employed by malicious users for a variety of reasons like
financial fraud, theft of confidential data, website
defacement, sabotage, etc. The number of SQLIA’s
reported in the past few years has been showing a steadily
increasing trend and so is the scale of the attacks. It is,
therefore, of paramount importance to prevent such types
of attacks, and SQLIA prevention has become one of the
most active topics of research in the industry and academia.
There has been significant progress in the field and a
number of models have been proposed and developed to
counter SQLIA’s, but none have been able to guarantee an
absolute level of security in web applications, mainly due
to the diversity and scope of SQLIA’s. One common
programming practice in today’s times to avoid SQLIA’s is
to use database stored procedures instead of direct SQL
statements to interact with underlying databases in a web
application, since these are known to use parameterized
queries and hence are not prone to the basic types of
SLQIA’s. However, there are vulnerabilities in this scheme
too, most notably when dynamic SQL statements are used
in the stored procedures, to fetch the database objects
during runtime. Our work is centered on this particular type
of vulnerability in stored procedures and we develop a
scheme for detection of SQLIA in scenarios where dynamic
SQL statements are used. This paper is divided into
following section In Section I introduction, in section II
basic of SQL injection, in section III various methodologies
of SQL injection attack, in section IV effects of SQL
injection, in section V problem statement, in section VI
various approaches used to prevent SQLIA, in VII our
proposed approach, in section VIII implementation details
and in IX conclusion and future work is present.

II. SQL INJECTION
SQL Injection is a type of vulnerability to web application
security in which an attacker is able to submit a database
SQL command, which is executed by a web application,
exposing the back-end database. SQL Injection attacks can
occur when a web application utilizes user-supplied data
without proper validation or encoding as part of a
command or query. The specially crafted user data tricks
the application into executing unintended commands or
changing data. SQL Injection allows an attacker to create,
read, update, alter, or delete data stored in the back-end
database. In its most common form, SQL Injection allows
attackers to access sensitive information such as social

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4981

security numbers, credit card number or other financial
data. According to Vera code’s State of Software Security
Report SQL Injection is one of the most prevalent types of
vulnerability to web application security.

Key Concepts of SQL Injection
• SQL injection is a software vulnerability that

occurs when data entered by users is sent to the
SQL interpreter as a part of an SQL query

• Attackers provide specially crafted input data to
the SQL interpreter and trick the interpreter to
execute unintended commands

• Attackers utilize this vulnerability by providing
specially crafted input data to the SQL interpreter
in such a manner that the interpreter is not able to
distinguish between the intended commands and
the attacker’s specially crafted data. The
interpreter is tricked into executing unintended
commands

SQL injection exploits security vulnerabilities at the
database layer. By exploiting the SQL injection flaw,
attackers can create, read, modify, or delete sensitive data.

III. SQL INJECTIONS METHODOLOGIES
Database applications have become a core component in
control systems and their associated record keeping
utilities. Traditional security models attempt to secure
systems by isolating core software components and
concentrating security efforts against threats specific to
those computers or software components.

Tautology: The general goal of a tautology-based attack is
to inject code in one or more conditional statements so that
they always evaluate to true. The consequences of this
attack depend on how the results of the query are used
within the application. The most common usages are to
bypass authentication pages and extract data. In this type of
injection, an attacker exploits an inject-able field that is
used in queries WHERE conditional. Transforming the
conditional into a tautology causes all of the rows in the
database table targeted by the query to be returned.

Example: In this example attack, an attacker submits
[‟ or 1=1 - -] for the user name input field (the input
submitted for the other fields is irrelevant). The resulting
query is:

SELECT status FROM tbl_user WHERE name = ’’ or 1=1 –
AND pwd= ‘ ‘

The code injected in the condition [OR 1=1] transforms the
entire WHERE clause into a tautology. The database uses
the conditional as the basis for evaluating each row and
deciding which ones to return to the application. Because
the conditional is a tautology, the query evaluates to true
for each row in the table and returns all of them.

Illegal/Logically Incorrect Query: This attack lets
attacker gather important information about the type and
structure of the back-end database of a Web application.
The attack is considered a preliminary, information
gathering step for other attacks. The vulnerability leveraged
by this attack is that the default error page returned by
application servers is often overly descriptive. In fact, the

simple fact that an error messages is generated can often
reveal vulnerable/inject-able parameters to an attacker.
Additional error information, originally intended to help
programmers debug their applications, further helps
attackers gain information about the schema of the back-
end database.
Example: This example attacks goal is to cause a type
conversion error that can reveal relevant data. To do this,
the attacker injects the following text

UNION SELECT TOP 1 COLUMN_NAME FROM
INFORMATION_SCHEMA.COLUMNS WHERE

TABLE_NAME='tbl_user'--
into the following URL:

http://www.domain.com/users/userinfo.asp?userid =123

The resulting query is:

http://www.domain.com/users/userinfo.asp?userid =123
UNION SELECT TOP 1 COLUMN_NAME FROM
INFORMATION_SCHEMA.COLUMNS WHERE

TABLE_NAME='tbl_user'—

The injected query extracts the 1st column name of
“admin_login” table from the information _schema
database.

Union Query: By this technique, attackers join injected
query to the safe query by the word UNION and then can
get data about other tables from the application.

Example: Following executed from the server

SELECT name, phone FROM tbl_user WHERE
userid=$id

By injecting the following Id value:

$id= 1 UNION ALL SELECT credit Card Number, 1 FROM
Credit CardTable

We will have the following query:

SELECT name, phone FROM tbl_user WHERE userid =
1 UNION ALL SELECT creditCardNumber, 1 FROM

Credit CardTable

This will join the result of the original query with all the
credit card users.

The proposed implemented system contains the
mechanisms, which will protect the web application from
the above discussed SQL injection attacks.

IV. EFFECTS OF SQL INJECTION
As the SQL injections are related with the database and in
today’s scenario where the database is one of the primary
assets of any organization. Therefore, with these SQL
injections, cyber-criminals can take complete remote
control of the database, and become able to manipulate the
database to do anything they wish, including:

• Insert a command to get access to all account
details in a system, including user names and
retrieve VNC passwords from registry

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4982

• Upload files
• Through reverse lookup, gather IP addresses and

attack those computers with an injection attack
• Corrupting, deleting or changing files and interact

with the OS, reading and writing files
• Online shoplifting e.g. changing the price of a

product or service, so that the cost is negligible or
free

• Insert a bogus name and credit card in to a system
to scam it at a later date

• Delete the database and all its contents
• Shut down a database

91% of database attacks lead to financial loss [1], but the
financial impact can be dwarfed be the long-term damage
to an organizations reputation. In fact, research by Ipsos
MORI[1] at march 2007 revealed that 58% of consumers
would stop using an organizations service following a
security breach involving their personal data.

V. PROBLEM STATEMENT
As shown in [2] the number of web servers are growing
and so the number of installed web applications on these
servers is rising as well. Many web sites use open source
web applications to provide certain services that are part of
the web site, such as a bulletin board (e.g., phpBB [3]) or a
blog (e.g., WordPress [4]), or they use a content
management system (e.g., Mambo [5], Typo3 [6], drupal
[7]) that can be used to operate the complete web site. Web
applications are not only used by private web site providers
but also by companies and governmental institutions. Most
often a database is used as the primary resource to retrieve
information that is requested by the user. The information
contained in the database has been stored by somebody
responsible of tending the web site, or the information is
created by an internal business process of the company
(e.g., the currently available articles in an on-line shop).
Another possible source of content in a web page may be a
remote web service of a news agency that provides current
news. The number of security problems found in software
has increased within the last years [8]. Some of the security
problems affect web applications that provide dynamic web
pages to their customers. Attacks that exploit these security
problems either prying on data contained in the web
application (e.g., credit card numbers of customers) or they
use the web application as an attack vector on the visiting
customer. Both types of attack rely on user input that is not
validated by the web application. To extract personal
information from the web application, “SQL injection” can
be used [9, 10]. In this kind of attack, information that is
entered by the user is included in database queries that are
used to extract content for the web page. Because the user
input is not checked for malicious content, arbitrary SQL
queries can be executed. These queries can then be used to
circumvent safety procedures incorporated in the web
application (e.g., bypass logins), retrieve personal data of
customers (e.g., credit card numbers, social security
numbers) or execute system commands on the targeted web
server (e.g., to install malicious software on the server).

VI. RELATED WORK
SQL injection is a particularly dangerous threat that
exploits application layer vulnerabilities inherent in web
applications. Instead of attacking instances such as web
servers or operating systems, the purpose of SQL injection
is to attack RDBMSs, running as back-end systems to web
servers, through web applications [11, 12, 13, 14, 15 & 16].
There are many measures that can be taken to prevent SQL.
Out of which, the following mechanisms & methodologies
are to be discussed.
In 2005 by Halfond and Orso et al proposed Analysis and
Monitoring for Neutralizing SQL-Injection attacks [17]. In
the figure 4 AMNESIA, the authors are using runtime
checking of the query and declare it valid or malicious.
AMNESIA checks query in different steps. In the first step
it identifies the “hotspot”. Hotspots are application code
which issues SQL query to database. Second, it forms a
model for legitimate query in the form of NDFA (Non-
Deterministic Finite Automata). Finally, as a request comes
it checks the query with NDFA and declares it legitimate or
malicious. It actually works by combining static analysis
and runtime monitoring of database queries. In its static
part, technique uses program analysis to automatically
build a model of the legitimate queries that will be
generated by the application. While in the dynamic part, the
technique monitors the dynamically runtime generated
queries and checks them for acceptability with the
statically-generated model. Query that doesn’t match with
the model represent potential SQLIAs and are hence
prevented from executing on the database and reported.

Fig 1: Analysis and Monitoring for Neutralizing

 SQL-Injection attacks (AMNESIA)

In 2005 Buehrer et al proposed a mechanism “Using parse
tree validation to prevent SQL injection attacks”[18] which
uses a parse tree, data structure, for the validation of query.
In this technique the authors have used a parse tree as a
model and every query entering to database is checked
against that tree. After checking with parse tree the query is
either declared valid or malicious.

In 2008 Kemalis et al proposed a specification based
technique “SQL-IDS: a specification-based approach for

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4983

SQLinjection detection” [19]. In this technique they specify
a model for SQL statements. The model is based on a set of
rules. The SQL statements are intercepted to the model.
After lexical analysis and syntactical verification of the
query either declares it valid or invalid. It keeps the log file
of the whole process which will facilitate the administrator.

In 2009 MeiJunjin is using an approach called “An
approach for SQL injection vulnerability detection” [20]
for the detection of SQL injection vulnerabilities. The
above mentioned author has used static, dynamic and
automatic testing method for the detection of SQL injection
vulnerabilities. The approach traces user queries to
vulnerable location.

In 2009 by Ezumalai et al. used a signature based approach
“Combinatorial Approach for Preventing SQL Injection
Attacks”[21] for the protection of SQL injection. In this
approach they used three modules to detect security issues.
A monitoring module which takes input from web
application and sent to analysis module. An analysis
module which finds out the hotspots from application, it
uses Hirschberg algorithm [22]. This is a string comparison
algorithm which works on divide and conquer rule. It stores
all the keywords in the specifications module.

SQLIA Prevention Using Stored Procedures - Stored
procedures are subroutines in the database which the
applications can make call to [23]. The prevention in these
stored procedures is implemented by a combination of
static analysis and runtime analysis. The static analysis
used for commands identification is achieved through
stored procedure parser and the runtime analysis by using a
SQL Checker for input identification.

 VII .PROPOSED APPROACH
After studying the various SQL injection prevention
techniques, we proposed a technique in which we
implement a mechanism, that detect & prevent the SQL
injections by incorporating the techniques of “HASHING”
& “ENCRYPTION”.

The concept behind our implemented system is simple:
instead of relying on user’s permissions, we implement
cumbersome defensive coding techniques with which, we
can detect & prevent the SQL injections and provide
security to the web application.

Fig 2: Proposed SQL-ENCP Architecture

Our proposed method simply works on the “HASHING”
methods for the secure login technique. In which, we
compute the hash value of the username and passwords for
any user and store it in database table along with the simple
username & passwords.

Table I: User table without security guidelines contains only username &

passwords
ID Username Password
1 krishnpal krsh123
2 mayank mayank123

Table II: User table with security guidelines also contains the hash values
(* only for representation, not in actual table)

ID user-name password Hash_username* Hash_ password* Hash_EX-OR

1 krishn pal krsh123
F59295350096DBA03
3BEA802EC1A573FB
E937EB0

19AA6EE730DFD50936A5
45A683A0716380D9E8E5

EC73D2D20E29051BEDA
413A265C349655

2 mayank
mayank12
3

7FE94AC4AC6B9336
9B5E8C290ECB15E4
43771657

947F02F46B4CA59418870
C21CC4A9391DDC52F1A

2964830C7278B53108C28
1899EB2394D

Table III: Query Testing

Standard Query
SELECT username, password FROM tbl_user WHERE username = @usrname AND
password = @pwd

Malicious Code
SELECT username, password FROM tbl_user WHERE username ‘ ’ OR 1=1; ‘/* AND
password = ‘*/’

SQL Injection
SELECT username, password FROM tbl_user WHERE hash_exor =
Exor(hashval('$user_nm'), hashval('$pass'))

Output Not Possible, As the direct values not passing to SQL Query.

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4984

HASH FUNCTION ALGORITHM
In the proposed approach there is a need for one extra
column in database, which contains the EX-OR of the Hash
values of username and password at the time, when a user
account is created for the first time and stores it in the User
table. Whenever user wants to login to database his/her
identity is checked using user name and password and its
hash values. These hash values are calculated at runtime
using store procedure when user wants to login into the
database.
During the authentication of user, the SQL query with hash
parameters is used. Hence, if a user tries the injection to the
query, and our proposed methodology is working with SQL
query, it will automatically detect the injections as the
potentially harmful content and rejects the values.

Fig 3: System design for SQLIA Detection & Prevention (SQL-ENCP)

Therefore, it cannot bypass the authentication process. The
advantage of the proposed technique is that the hackers do
not know about the hash values of user name and password.
So, it is not possible for the hacker to bypass the
authentication process through the general SQL injection
techniques.

The SQL injection attacks can only be done on codes which
are entered through user entry form but the hash values are
calculated at run time at backend before creating SELECT
query to the underlying database therefore the hacker
cannot calculate the hash values as it dynamic at Runtime.

Fig 4: Proposed Hash Scheme for Detecting SQLIA & Prevent Them

(SQLENCP)

Consider a scenario, where a user is authenticated by the
secure login mechanism and login the system. Now, if this
authenticated user make any intrusion into the system. How
can we defend it?

Hence to prevent after-login attacks we have taken the help
of data encryption. As we saw in the previous section that it
is possible to collect the highly confidential information by
using union operator we find out an alternative way to store
all these confidential information’s.

In our database, instead of directly storing all confidential
information’s, we store them in encrypted format with a
secure and confidential encryption-key. Now even if the
dispatcher user can able to see the atm_pin by using union
operation, he cannot able to decrypt it without knowing the
exact encryption method and encryption- key. So he cannot
able to do any damage with that encrypted atm_pin.

VIII. IMPLEMENTATION DETAILS & RESULT ANALYSIS
The proposed scheme implemented by developing a
website, using Apache 2.4.2, MYSQL 5.5.25a, PHP 5.4.4
and tested on windows environment with XAMPP 1.8.0.
The proposed implemented system for SQL Injections
Prevention Using Hashing & Encryption Techniques works
on following two modes:
1- SIMPLE MODE
2- PROTECTED MODE

SIMPLE MODE:
In this mode the implemented system works in the non-
protected environment. In which the SQL injections and
vulnerabilities are not prevented & neither detected,
because user inputted data is directly delivers to the
database manager for the execution. It means there is no
mechanism running in between the application & database
to detect malicious code or query & stop the execution.
Hence, there is no protection of data from the SQL
injections or any illegal activity. Consider an example:

Table IV: SQL Query Become An Injection (Malicious Code)

Standard
Query

SELECT * FROM tbl_user WHERE username
= '@Username' AND password='@password'

Malicious
Code

@username = ' OR 1=1 – – ' @password =
password

SQL
Injection

SELECT * FROM tbl_user WHERE name = ' '
OR 1=1 – – ' ' AND password= ' Password'

Output Yes * As condition become TRUE

In table IV, it is clear that for any login form, if the user can
inputs the malicious code in corresponding username field
& password field. The Genuine SQL query will become an
injection (Malicious Code). This malicious code can
bypassed the authentication process easily through SQL
injection.

Similarly, In Simple mode of proposed implemented
system no protection from the unauthorized data access is
provided. Hence, even after authorized login, one can
perform the intrusion by passing malicious code to the
textboxes (web control).Consider an example:

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4985

Table V: Union Query SQL Injections

Standard
Query

SELECT name, phone FROM tbl_user WHERE
userid=@id

Malicious
Code

@username = 1 UNION ALL SELECT credit
Card Number, 1 FROM Credit CardTable

SQL
Injection

SELECT name, phone FROM tbl_user WHERE
userid = 1 UNION ALL SELECT

creditCardNumber, 1 FROM Credit CardTable

Output
Yes *

Join the result of the original query with all the
credit card users

We have shown the UNION queries SQL Injection in table
V. Where, a user can modify the original SQL query by
passing UNION operator with the malicious code in
textbox. This will allow the user to access the data, which
has restriction for the general user access.

PROTECTED MODE:
In this mode, we took action against the SQL injections by
enforcing certain policies and mechanism, which analyses
the user inputted data and make decision whether it is
malicious or not. If found malicious code, discard the
database access request.
Our proposed implemented system protects the database
from the following three SQL injections attacks:

• Tautologies Attacks
• Illegal/Logically Incorrect Query
• Union Query SQL Injections

For the TAUTOLOGIES type’s attacks, our proposed
system has the key feature of using ex-or of hash values of
username & password for the safe authentication as we
have shown in table 3.
And to rectify the problems associated with
ILLEGAL/LOGICALLY INCORRECT QUERY SQL
injection, we make a module guard that checks the structure
of query as well as the data passing through as argument,
and returns Boolean value. TRUE means LEGITIMATE
request and FALSE means ILLEGAL STRUCTURE,
therefore on the basis of this decision. In this module, we
map all the error messages to the programmer defined
errors, which protect the application database from the leak
of schema definition.
Example: consider the above standard query in table 3.
Inputted value is “’abc”, query formed will be

Select * from tbl_user where username=’’abc’ and
password=’’;

Automated Error message:
System.Data.OleDb.OleDbException:Syntax error
(missing operator) in query expression 'username=''abc'
and password='';’

From the error message intruder can deduce that the type of
database connectivity and the fields name in the “dept”
table. This information can be used to perform further
attacks on the application. Therefore, in our proposed
system, we have the user defined errors that doesn’t appear
automated generated errors.
Hence, in above discussed case: the error message will be.
Programmer Handled Error message:

Incorrect Username / Password.

Similarly, to handle the UNION based SQL injections and
after login attacks, we have taken the help of data
encryption. As we saw in the previous section (table 5) that,
it is possible to collect the highly confidential information
by using union operator we find out an alternative way to
store all these confidential information’s. In our database,
instead of directly storing all confidential information’s, we
store them in encrypted format with a secure and
confidential encryption-key. Hence, with this approach the
intruder cannot able to decrypt it without knowing the exact
encryption method and encryption- key. Therefore, No one
other than legitimate user can make changes in the data.
Though we are hiding information from spurious users,
according to our business rule admin user should able see
the actual confidential data of each user (Please don’t
compare it with real life situation. It’s just an assumption).
Now to allow this, we have to first decrypt the encrypted
the confidential data. To decrypt a value we use the
MYSQL function AES_DECRYPT (). We also need the
encryption-key. This key must be store safely because if
anyone can able to know both encryption method and the
key then he can able to decrypt the information.
Therefore, In comparison with existing systems for SQL
injections prevention, our proposed implemented system is
much secure, efficient and prevents the above discussed
SQL attacks (i.e. Tautology Attacks, Illegal Structured
Query Attacks & Union Based Query Attacks) to assure the
security of database.

The table 6 shown below is the comparison of proposed
implemented system. Sign convention for the following
table is (Y) for Yes, (D) for Detection and (P) for
Prevention. In which, it is clear that existing system like
AMNESIA[17], SQL GUARD[18], SQL-IDS[19] can only
detects the SQLIAs and HASH + SALT Technique can
prevents the SQLIAs of tautology & piggybacking
category. While, the proposed implemented system is able
to detect as well as prevents the SQLIAs of various types
(i.e. Tautology, Illegal Structure, Piggy backing & Union
type Injections attacks

Table VI: Comparison with existing system for SQL injections detection & prevention
Technique Tautology Illegal

Structured
Piggybacking Union Stored

Procedure
Inference Alternate

Encoding
PROPOSED Y-D-P Y-D-P Y-D-P Y-D-P - - -

AMNESIA[17] Y-D Y-D Y-D Y-D - Y-D Y-D
SQL GUARD[18] Y-D Y-D Y-D Y-D - Y-D Y-D

SQL-IDS[19] Y-D Y-D Y-D Y-D Y-D Y-D Y-D
Hash + Salt[24] Y-P - Y-P - - - -

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4986

IX.CONLUSION & FUTURE WORK
During the study of several researches based on the SQL
injection Prevention & Attacks, we found that certain cases
are there, when these approaches are not found to be
effective. Hence, these approaches become un-useful
cannot able to detect the injections to prevent them. In
addition, the attackers can access the database directly in an
illegal way. Therefore, we are at the proposed a new
approach that is completely based on the hash method of
using the SQL queries in the web-based environment,
which is much secure and provide the prevention from the
attackers SQL. But, our proposed strategy requires the
alterations in the design of existing schema database and a
new guideline for the database user before writing any new
database. Through these guidelines, we found the effective
outcomes in SQL injections Preventions. After that we
compared these techniques in terms of their ability to stop
SQLIA. Still, we need to improve our approach so that, it
can prevent the web application & database from all kind of
SQL Injections. We also plan to apply SQL Prevent to
dynamic discovery of SQLIA vulnerabilities.

In this work, we have concentrated on the specific area of
SQL injection. We believe that this area is in need of
further investigation, mainly because of many reasons:
SQL injection attacks are most likely to evolve and new
vulnerabilities will be found, together with new
countermeasures to deal with them. Since many hacking
sites are available on the web, and since attack methods are
well described and distributed between hackers, we believe
that information about new attack methods should
continuously be surveyed and new counter measures should
be developed.

REFERNCES
[1]. secerno.com,” SQL Injection Attack: A Security Threat”,

http://www.secerno.com/?pg=SQL-Injection#2
[2]. Netcraft. Netcraft: Web Server Survey Archives.

http://news.netcraft.com/archives/web_server_survey.html,
February 2006.

[3]. phpBB Group. phpBB.com :: Creating Communities.
http://www.phpbb.com, 2006.

[4]. WordPress. WordPress Free Blog Tool and Weblog Platform.
http://wordpress.org/, 2006.

[5]. Miro International Pty Ltd. Mamboserver.com - Home.
http://www.mamboserver.com/, 2006.

[6]. TYPO3 Association. TYPO3 CMS: typo3.com.
http://www.typo3.com/, 2006.

[7]. Dries Buytaert. drupal.org Community plumbing. http://drupal.org/,
2006.

[8]. CERT CoordinationCenter. CERT/CC Statistics 1988-
2005.http://www.cert.org/stats/,January 2006.

[9]. Chris Anley. Advanced SQL Injection In SQL Server Applications.
In An NGSSoftware Insight Security Research (NISR) Publication,
2002.

[10]. Cesar Cerrudo. Manipulating Microsoft SQL Server Using SQL
Injection. Technical report,Application Security, Inc., 2002.

[11]. Martin Eizner. Direct sql command injection. Technical report, The
Open Web Application Security Project, 2001.
http://qb0x.net/papers/MalformedSQL/sqlinjection.html.

[12]. Mitchell Harper. Sql injection attacks - are you safe? Technical
report, DevArticles, may 2002.
http://www.devarticles.com/content.php?articleId=138&page=2.

[13]. Stuart McDonald. Sql injection: Modes of attack, defence, and why
it matters. Technical report, The SANS Institute, jul 2002.
http://www.sans.org/rr/appsec/SQL_injection.php.

[14]. Aaron C. Newman. Protecting oracle databases. Technical re-port,
Application Security, Inc., 2001.
http://www.appsecinc.com/presentations/Protecting_Oracle_Databa
ses_White_Paper.pdf.49

[15]. William A. Qualls. Exploit in action: A beginners view of inci-dent
handling for sql injection techniques. Technical report, SANS
Institute, 2003.
http://www.giac.org/practical/GCIH/William_Qualls_GCIH.pdf.62

[16]. Kevin Spett. Security at the next level - are your web applica-tions
vulnerable? Technical report, SPI Dynamics, 2002.
http://www.spidynamics.com/whitepapers/webappwhitepaper.pdf.

[17]. Halfond, W. G. J. and A. Orso (2005). AMNESIA: analysis and
monitoring for Neutralizing SQL-injection attacks. . ASE’05.
Long Beach, California, USA.

[18]. G.T. Buehrer, B. W. Weide. and P. A. G. Sivilotti (2005). Using
parse tree validation to prevent SQL injection attacks. Proceedings
of the 5th international workshop on Software engineering and
middleware. Lisbon, Portugal, ACM: pp. 106-113

[19]. Kemalis, K. and T. Tzouramanis (2008). SQL-IDS: a specification-
based approach for SQLinjection detection. SAC’08. Fortaleza,
Ceará, Brazil, ACM: pp. 2153 2158.

[20]. MeiJunjin (2009). An approach for SQL injection vulnerability
detection. Sixth International Conference on Information
Technology: New Generations: pp. 1411-1414.

[21]. R. Ezumalai, G. A. (2009). Combinatorial Approach for Preventing
SQL Injection Attacks. 2009 IEEE International Advance
Computing Conference (IACC 2009). Patiala, India: pp. 1212-
1217.

[22]. Hirschberg, D. S. (1975). "A linear space algorithm for computing
maximal common subsequences." A.C.M 18(06): pp. 341-343.

[23]. K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey of
SQLinjection defense mechanisms," Proc. Of ICITST 2009, vol.,
no., pp.1-8, 9-12 Nov. 2009.

[24]. Shubham Shrivastava, Rajeev Ranjan Kumar Tripathi, Attacks Due
to SQL injection & their Prevention Method for Web-Application,
International Journal of Computer Sciecne and information
technologies, Vol 3 (2), pp.3615-3618, 2012.

Mayank Namdev et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4981 - 4987

4987

